Empirical Analysis of Algorithms for Block-Angular Linear Programs

نویسنده

  • Jiarui Dang
چکیده

This thesis aims to study the theoretical complexity and empirical performance of decomposition algorithms. We focus on linear programs with a block-angular structure. Decomposition algorithms used to be the only way to solve large-scale special structured problems, in terms of memory limit and CPU time. However, with the advances in computer technology over the past few decades, many large-scale problems can now be solved simply by using some general purpose LP software, without exploiting the problems’ inner structures. A question arises naturally, should we solve a structured problem with decomposition, or directly solve it as a whole? We try to understand how a problem’s characteristics influence its computational performance, and compare the relative efficiency of algorithms with and without decomposition. Two comparisons are conducted in our research: first, the Dantzig-Wolfe decomposition method (DW) versus the simplex method (simplex); second, the analytic center cutting plane method (ACCPM) versus the interior point method (IPM). These comparisons fall into the two main solution approaches in linear programming: simplex-based algorithms and IPM-based algorithms. Motivated by our observations of ACCPM and DW decomposition, we devise a hybrid algorithm combining ACCPM and DW, which are the counterparts of IPM and simplex in the decomposition framework, to take the advantages of both: the quick convergence rate of IPM-based methods, as well as the accuracy of simplex-based algorithms. A large set of 316 instances is incorporated in our experiments, so that different dimensioned problems with primal or dual block-angular structures are covered to test our conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

A Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment

This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...

متن کامل

A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...

متن کامل

Approximately Solving Large-scale Linear Programs. I. Strengthening Lower Bounds and Accelerating Convergence

This report describes computational experience with an implementation of Plotkin-Shmoys-Tardos and Grigoriadis-Khachiyan approximation algorithm for block-angular linear programs, together with a technique for improving Lagrangian relaxations. Our implementation produces fast approximate solutions to large pure multicommodity ow problems, and linear programs arising in network design. A prelimi...

متن کامل

Two optimal algorithms for finding bi-directional shortest path design problem in a block layout

In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007